- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Yuheng Zhang, Hanghang Tong (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Graph neural networks (GNNs) have achieved tremendous success in many graph learning tasks such as node classifica- tion, graph classification and link prediction. For the classifi- cation task, GNNs’ performance often highly depends on the number of labeled nodes and thus could be significantly ham- pered due to the expensive annotation cost. The sparse litera- ture on active learning for GNNs has primarily focused on se- lecting only one sample each iteration, which becomes ineffi- cient for large scale datasets. In this paper, we study the batch active learning setting for GNNs where the learning agent can acquire labels of multiple samples at each time. We formu- late batch active learning as a cooperative multi-agent rein- forcement learning problem and present a novel reinforced batch-mode active learning framework (BIGENE). To avoid the combinatorial explosion of the joint action space, we in- troduce a value decomposition method that factorizes the to- tal Q-value into the average of individual Q-values. More- over, we propose a novel multi-agent Q-network consisting of a graph convolutional network (GCN) component and a gated recurrent unit (GRU) component. The GCN compo- nent takes both the informativeness and inter-dependences between nodes into account and the GRU component enables the agent to consider interactions between selected nodes in the same batch. Experimental results on multiple public datasets demonstrate the effectiveness and efficiency of our proposed method.more » « less
-
Yuheng Zhang, Hanghang Tong (, AAAI 2022)
An official website of the United States government

Full Text Available