skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yuheng Zhang, Hanghang Tong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph neural networks (GNNs) have achieved tremendous success in many graph learning tasks such as node classifica- tion, graph classification and link prediction. For the classifi- cation task, GNNs’ performance often highly depends on the number of labeled nodes and thus could be significantly ham- pered due to the expensive annotation cost. The sparse litera- ture on active learning for GNNs has primarily focused on se- lecting only one sample each iteration, which becomes ineffi- cient for large scale datasets. In this paper, we study the batch active learning setting for GNNs where the learning agent can acquire labels of multiple samples at each time. We formu- late batch active learning as a cooperative multi-agent rein- forcement learning problem and present a novel reinforced batch-mode active learning framework (BIGENE). To avoid the combinatorial explosion of the joint action space, we in- troduce a value decomposition method that factorizes the to- tal Q-value into the average of individual Q-values. More- over, we propose a novel multi-agent Q-network consisting of a graph convolutional network (GCN) component and a gated recurrent unit (GRU) component. The GCN compo- nent takes both the informativeness and inter-dependences between nodes into account and the GRU component enables the agent to consider interactions between selected nodes in the same batch. Experimental results on multiple public datasets demonstrate the effectiveness and efficiency of our proposed method. 
    more » « less